Abstract

Surface properties of Au electrodes modified by benzenethiol derivatives with a fluorine atom(s) have been methodically researched based on measurements of the work function and the contact angles. Benzenethiol derivatives with a fluorine atom(s) at ortho, meta, and/or para position were used for modification in this work. The measured work function was in a relatively wide range between 4.24–6.02 eV. The work function change from a bare Au surface was explained on the principle of dipole moments obtained by quantum chemical calculation. The water contact angle was found to vary between 64.8° and 97.7°. Furthermore, the surface tension was calculated from the measured contact angles of water and ethylene glycol. The calculated surface tension was reviewed from the perspective of the position of the substitute in the benzenethiol derivative. In addition, organic thin-film transistors (TFTs) with drain and source electrodes modified with 2-fluorobenzenethiol (2-FBT), 3-fluorobenzenethiol (3-FBT) or pentafluorobenzenethiol (PFBT) were characterized as other evaluations of the modified Au surface. The contact resistance in the TFT increased in the order of PFBT, 3-FBT and 2-FBT. The increase of the contact resistance was consistent with the decrease in the work function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.