Abstract
High linearity/sensitivity and a wide dynamic sensing range are the most desirable features for pressure sensors to accurately detect and respond to external pressure stimuli. Even though a number of recent studies have demonstrated a low-cost pressure sensing device for a smart insole system by using scalable and deformable conductive materials, they still lack stretchability and desirable properties such as high sensitivity, hysteresis, linearity, and fast response time to obtain accurate and reliable data. To resolve this issue, a flexible and stretchable piezoresistive pressure sensor with high linear response over a wide pressure range is developed and integrated in a wearable insole system. The sensor uses multi-walled carbon nanotubes and polydimethylsiloxane (MWCNT/PDMS) composites with gradient density double-stacked configuration as well as randomly distributed surface microstructure (RDSM). The randomly distributed surface of the MWCNT/PDMS composite is easily and non-artificially generated by the evaporation of residual IPA solvent during a composite curing process. Due to two functional features consisting of the double-stacked composite configuration with different gradient MWCNT density and RDSM, the pressure sensor shows high linear sensitivity (∼82.5 kPa) and a pressure range of 0-1 MPa, providing extensive potential applications in monitoring human motions. Moreover, for a practical wearable application detecting the user's real-time motions, a custom-designed output signal acquisition system has been developed and integrated with the insole pressure sensor. As a result, the insole sensor can successfully detect walking, running, and jumping movements and can be used in daily life to monitor gait patterns by virtue of its long-term stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.