Abstract

We report on subwavelength reflective gratings for hyperspectral applications operating in a very large spectral band (340–1040 nm). Our study concerns a blazed-binary grating having a period of 30 μm and composed of 2D subwavelength structures with size from 120 nm to 350 nm. We demonstrate the manufacturing of the gratings on 3″ wafers by two lithography technologies (e-beam and nanoimprint) followed by classical dry etching process. Optical measurements show that the subwavelength grating approach enables a broadband efficiency, polarization behaviour and wavefront quality improvement with respect to the requirements for the next generation of spectro-imagers for Earth observation missions. An outlook towards spherical substrate based on nanoimprint lithography is also reported with the results of mixed features replication (holes and pillars in the range of 160–330 nm) on a 540 mm concave substrate which demonstrate uniformity and accuracy capabilities over 3″ surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.