Abstract

In this work, a terahertz sensor based on a cross dipole frequency selective surface is analyzed and experimentally tested. The sensing structure is optimized for operation at the fundamental band-stop resonance near 0.7 THz and characterized under normal and oblique incidence. The sensing performance as a function of the incidence angle and the wave polarization is evaluated with good agreement between simulations and measurements. It is shown that a figure of merit for the proposed sensor can be enhanced from 0.2 up to 0.6 due to switching from normal to oblique excitation, which yields the maximum performance for TM polarization at the incidence angle of 70°. The presented results demonstrate a wide angle operation regime in THz sensing that opens up an alternative approach in improving capabilities of sensing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.