Abstract

Indoor localization and navigation have become an increasingly important problem in both industry and academia with the widespread use of mobile smart devices and the development of network techniques. The Wi-Fi-based technology shows great potential for applications due to the ubiquitous Wi-Fi infrastructure in public indoor environments. Most existing approaches use trilateration or machine learning methods to predict locations from a set of annotated Wi-Fi observations. However, annotated data are not always readily available. In this paper, we propose a robot-aided data collection strategy to obtain the limited but high-quality labeled data and a large amount of unlabeled data. Furthermore, we design two deep learning models based on a variational autoencoder for the localization and navigation tasks, respectively. To make full use of the collected data, a hybrid learning approach is developed to train the models by combining supervised, unsupervised and semi-supervised learning strategies. Extensive experiments suggest that our approach enables the models to learn effective knowledge from unlabeled data with incremental improvements, and it can achieve promising localization and navigation performance in a complex indoor environment with obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.