Abstract

Chiral Ni(II) complexes are used for the preparation of carbon-11 or fluorine-18 enantiomerically pure α-amino acids for positron emission tomography (PET). They enable the selective monoalkylation of a glycine synthon with high stereoselectivity and the preparation of enantiomerically pure α-amino acids with quarternary α-carbon. Molecular modelling of non-, mono- and di-substituted complexes using quantum theory of atoms-in-molecule (QTAIM) topological analysis of electron density allowed us to formulate a new theory explaining the reasons for highly selective monomethylation of the complexes. In the non-substituted complex (GK), the α-carbon atom exhibits a higher atomic volume and a more positive charge in comparison with mono- and di-substituted complexes. This unusual behaviour is accompanied by increasing the bond critical point (BCP) ellipticity of the iminic bond in GK explained by the higher mechanical strain. Both phenomena indicate the increased reactivity and probably originate in more compact core of GK where shorter distances in the internal coordination sphere result in the higher strain of its bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.