Abstract

Shiga toxin-producing Escherichia coli (STEC) are considered to be a significant threat to public health due to the severity of gastrointestinal symptoms associated with human infection. In England STEC O157 is the most commonly detected STEC serogroup, however, the implementation of PCR at local hospital laboratories has resulted in an increase in the detection of non-O157 STEC. The aim of this study was to evaluate the use of whole genome sequencing (WGS) for routine public health surveillance of non-O157 STEC by comparing this approach to phenotypic serotyping and PCR for subtyping the stx-encoding genes. Of the 102 isolates where phenotypic and genotypic serotyping could be compared, 98 gave fully concordant results. The most common non-O157 STEC serogroups detected were O146 (22) and O26 (18). All but one of the 38 isolates that could not be phenotypically serotyped (designated O unidentifiable or O rough) were serotyped using the WGS data. Of the 73 isolates where a flagella type was available by traditional phenotypic typing, all results matched the H-type derived from the WGS data. Of the 140 sequenced non-O157 isolates, 52 (37.1%) harboured stx1 only, 42 (30.0%) had stx2 only, 46 (32.9%) carried stx1 and stx2. Of these, stx subtyping PCR results were available for 131 isolates and 121 of these had concordant results with the stx subtype derived from the WGS data. Of the 10 discordant results, non-specific primer binding during PCR amplification, due to the similarity of the stx2 subtype gene sequences was the most likely cause. The results of this study showed WGS provided a reliable and robust one-step process for characterization of STEC. Deriving the full serotype from WGS data in real time has enabled us to report a higher level of strain discrimination while stx subtyping provides data on the pathogenic potential of each isolate, enabling us to predict clinical outcome of each case and to monitor the emergence of hyper-virulent strains.

Highlights

  • Shiga toxin-producing Escherichia coli (STEC) are considered to be a significant threat to public health due to the severity of gastrointestinal symptoms associated with human infection and the risk of cases developing Haemolytic Uraemic Syndrome (HUS; Byrne et al, 2015)

  • During 2014, we evaluated the use of whole genome sequencing (WGS) for routine public health surveillance of non-O157 STEC by comparing this approach to phenotypic serotyping and PCR for subtyping the stx-encoding genes (Persson et al, 2007)

  • Of the four results that were not fully concordant, two isolates serogrouped as O186 phenotypically but were designated O123/O186 by in silico serotyping and one typed as O178 phenotypically and was designated O153/178 using WGS data

Read more

Summary

Introduction

Shiga toxin-producing Escherichia coli (STEC) are considered to be a significant threat to public health due to the severity of gastrointestinal symptoms associated with human infection and the risk of cases developing Haemolytic Uraemic Syndrome (HUS; Byrne et al, 2015). STEC serogroups other than O157 (non-O157 STEC) are not detected using this method (Byrne et al, 2014). Since 2012 the implementation of commercial PCR assays for the detection of STEC in faecal specimens from cases with symptoms of gastrointestinal infection, at a twelve local hospital laboratories, has resulted in an increase in the detection of non-O157 STEC (Byrne et al, 2014)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.