Abstract

BackgroundPorcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level.MethodsThe SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted.ResultsNineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected.ConclusionGenome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.