Abstract

BackgroundAyurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates.MethodsNormal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types.ResultsIndividuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of housekeeping, disease related and hub genes were observed in these extreme constitution types.ConclusionAyurveda based method of phenotypic classification of extreme constitutional types allows us to uncover genes that may contribute to system level differences in normal individuals which could lead to differential disease predisposition. This is a first attempt towards unraveling the clinical phenotyping principle of a traditional system of medicine in terms of modern biology. An integration of Ayurveda with genomics holds potential and promise for future predictive medicine.

Highlights

  • Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C

  • To investigate the Ayurvedic system of phenotypic classification in molecular terms, we examined the possibility of identifying genome wide expression and biochemical differences amongst the Prakriti types

  • Clinical phenotyping On an average 10% of the individuals were of predominant Prakriti types as assessed by the physicians

Read more

Summary

Introduction

Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. In the Ayurveda system of medicine, predisposition to a disease as well as selection of a preventive and curative regime is primarily based on phenotypic assessment of a person which includes one's body constitution termed "Prakriti". Pitta is primarily responsible for metabolism, thermo-regulation, energy homeostasis, pigmentation, vision, and host surveillance. Much as it would sound surprising, but the sanskrit version of the modern terms described above exists in the ancient texts (see Additional File 1). Phenotypic diversity, according to Ayurveda, is a consequence of a continuum of relative proportions of Doshas resulting in seven possible constitutional types namely Vata, Pitta, Kapha, Vata-Pitta, Pitta-Kapha, Vata-Kapha and Vata-PittaKapha. The first three are considered as extremes, exhibiting readily recognizable phenotypes, and are more predisposed to specific diseases [5,6,7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.