Abstract

Whole-genome duplication (WGD) is one of the most common genomic abnormalities in cancers. WGD can provide a source of redundant genes to buffer the deleterious effect of somatic alterations and facilitate clonal evolution in cancer cells. The extra DNA and centrosome burden after WGD is associated with an elevation of genome instability. Causes of genome instability are multifaceted and occur throughout the cell cycle. Among these are DNA damage caused by the abortive mitosis that initially triggers tetraploidization, replication stress and DNA damage associated with an enlarged genome, and chromosomal instability during the subsequent mitosis in the presence of extra centrosomes and altered spindle morphology. Here, we chronicle the events after WGD, from tetraploidization instigated by abortive mitosis including mitotic slippage and cytokinesis failure to the replication of the tetraploid genome, and finally, to the mitosis in the presence of supernumerary centrosomes. A recurring theme is the ability of some cancer cells to overcome the obstacles in place for preventing WGD. The underlying mechanisms range from the attenuation of the p53-dependent G1 checkpoint to enabling pseudobipolar spindle formation via the clustering of supernumerary centrosomes. These survival tactics and the resulting genome instability confer a subset of polyploid cancer cells proliferative advantage over their diploid counterparts and the development of therapeutic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.