Abstract

The Nb-P triple bond in [P≡Nb(N[Np]Ar)(3)](-) (Np = CH(2)(t)Bu; Ar = 3,5-Me(2)C(6)H(3)) has produced the first case of P(4) activation by a metal-ligand multiple bond. Treatment of P(4) with the sodium salt of the niobium phosphide complex in weakly coordinating solvents led to formation of the cyclo-P(3) anion [(P(3))Nb(N[Np]Ar)(3)](-). Treatment in tetrahydrofuran (THF) led to the formation of a cyclo-P(5) anion [(Ar[Np]N)(η(4)-P(5))Nb(N[Np]Ar)(2)](-), which represents a rare example of a substituted pentaphosphacyclopentadienyl ligand. The P(4) activation pathway was shown to depend on the dimer-monomer equilibrium of the niobium phosphide reagent, which, in turn, depends on the solvent used for the reaction. The pathway leading to the cyclo-P(3) product was shown to require a 2:1 ratio of the phosphide anion to P(4), while the cyclo-P(5) formation requires a 1:1 ratio. The cyclo-P(3) salt has been isolated in 56% yield as orange crystals of the [Na(THF)](2)[(P(3))Nb(N[Np]Ar)(3)](2) dimer or in 83% yield as an orange powder of [Na(12-crown-4)(2)][(P(3))Nb(N[Np]Ar)(3)]. A solid-state X-ray diffraction experiment on the former salt revealed that each Nb-P(3) unit exhibits pseudo-C(3) symmetry, while (31)P NMR spectroscopy showed a sharp signal at -223 ppm that splits into a doublet-triplet pair below -50 °C. It was demonstrated that this salt can serve as a P(3)(3-) source upon treatment with AsCl(3), albeit with modest yield of AsP(3). The cyclo-P(5) salt was isolated in 71% yield and structurally characterized from red crystals of [Na(THF)(6)][(Ar[Np]N)(η(4)-P(5))Nb(N[Np]Ar)(2)]. The anion in this salt can be interpreted as the product of trapping of an intermediate pentaphosphacycplopentadienyl structure through migration of one anilide ligand onto the P(5) ring. The W(CO)(5)-capped cyclo-P(3) salt was also isolated in 60% yield as [Na(THF)][(OC)(5)W(P(3))Nb(N[Np]Ar)(3)] from the activation of 0.5 equiv of P(4) with the sodium salt of the tungsten pentacarbonyl adduct of the niobium phosphide anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.