Abstract

ABSTRACTPrevious study of subducted continental crust within the Luliang Shan terrane in Northwest China has documented metasomatic formation of thick, hydrated phengite + garnet-rich selvages at the interface between mafic eclogite blocks and quartzofeldspathic host gneiss. Whole rock concentrations of Cs and Ba within the selvage are enriched by two orders of magnitude relative to the eclogite blocks and host gneiss. We performed in situ ion microprobe analyses of Li, Be, B, Rb, Sr, Cs and Ba and δ11B of phengite within the Luliang Shane terrane to better constrain the source(s) of the infiltrating fluid. The phengite within the selvage are enriched in Li, Cs and Ba and yield δ11B values between −30‰ and −9‰, values that are lower than mantle values. High Ba/Rb, Cs/Rb coupled with low B/Be, B/Li and highly negative δ11B values indicate that the high-pressure fluid that formed the selvage was derived from highly devolatilized rocks within the subduction channel. In contrast, muscovite, which crystallized in the adjacent host gneiss during a subsequent lower pressure phase of fluid infiltration at approximately 0.9 GPa depths, has much lower Li, Cs and Ba relative to the high-pressure phengite. These retrograde muscovite have very high concentrations of B (up to 5500 ppm) and Be (up to 50 ppm) and high (−2 to +8‰) δ11B values that are consistent with crystallization from a fluid derived from shallower and less devolatilized regions of the subduction zone. Additional host gneiss samples, regionally distributed and kilometres away from the studied area lack the B-rich signature and indicate that the late stage fluids were likely localized to the region near the studied traverse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.