Abstract
Previous studies suggest white matter (WM) integrity is vulnerable to chronic hypoperfusion during brain ageing. We assessed ~ 0.7 million capillary profiles in the frontal lobe WM across several dementias comprising Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease with dementia, vascular dementia, mixed dementias, post-stroke dementia as well as post-stroke no dementia and similar age ageing and young controls without significant brain pathology. Standard histopathological methods were used to determine microvascular pathology and capillary width and densities in 153 subjects using markers of the basement membrane (collagen IV; COL4) and endothelium (glucose transporter-1; GLUT-1). Variable microvascular pathology including coiled, tortuous, collapsed and degenerated capillaries as well as occasional microaneurysms was present in all dementias. As expected, WM microvascular densities were 20–49% lower than in the overlying cortex. This differential in density between WM and cortex was clearly demonstrated by COL4, which was highly correlated with GLUT-1 densities (Spearman’s rho = 0.79, P = 0.000). WM COL4 immunopositive microvascular densities were decreased by ~ 18% across the neurodegenerative dementias. However, we found WM COL4 densities were increased by ~ 57% in post-stroke dementia versus ageing and young controls and other dementias. Using three different methods to measure capillary diameters, we found WM capillaries to be significantly wider by 19–45% compared to those in overlying neocortex apparent with both COL4 and GLUT-1. Remarkably, WM capillary widths were increased by ~ 20% across all dementias compared to ageing and young controls (P < 0.01). We also noted mean WM pathology scores incorporating myelin loss, arteriolosclerosis and perivascular spacing were correlated with COL4 immunopositive capillary widths (Pearson’s r = 0.71, P = 0.032). Our key finding indicates that WM capillaries are wider compared to those in the overlying neocortex in controls but they dilate further during dementia pathogenesis. We suggest capillaries undergo restructuring in the deep WM in different dementias. This reflects compensatory changes to retain WM perfusion and integrity during hypoperfusive states in ageing-related dementias.
Highlights
The cerebral white matter (WM) has become an important focus for investigation of mechanisms in brain ageing and dementia
We found tortuous or coiled capillaries immunostained by both markers COL4 and glucose transporter-1 (GLUT-1)
Semi-quantitative grading indicated the severity of string capillaries or microvessels to be in the order: Vascular dementia (VaD) = post-stroke dementia (PSD) > Alzheimer’s disease (AD) >Mixed 2 > Mixed 1 ≥ dementia with Lewy bodies (DLB) ≥ Parkinson’s disease with dementia (PDD) > > Controls
Summary
The cerebral white matter (WM) has become an important focus for investigation of mechanisms in brain ageing and dementia. Age is the single most important risk factor for WM damage, which relates to increased white matter hyperintensities (WMH) on T2- weighted magnetic resonance imaging (MRI) and associated with vascular disease, disability, cognitive impairment and death [9, 15, 18]. Cerebral hypoperfusion in older age is implicated as a key pathophysiological element, which contributes to diffuse WM changes. Both cerebral small vessel disease and carotid artery disease are risk factors for cerebral WM damage [4, 9].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.