Abstract

Purpose: The present study aimed to assess structural asymmetry in patients with mesial Temporal Lobe Epilepsy (mTLE) in the diffusion properties of brain white matter and subcortical gray matter tracts using Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI). We considered a lower order DTI measure, Fractional Anisotropy (FA), and a higher-order DKI measure, Kurtosis Anisotropy (KA), as quantitative measures of the white matter diffusion properties in facing mTLE. We also made a comparison between these two measures in terms of the sensitivity to capture microstructural changes in concordance with TLE. Materials and Methods: Thirty-two subjects with mTLE participated in this study. All the cases underwent multi-shell diffusion MRI acquisition. The subjects were grouped according to their epileptogenic side of the brain (19 Left-sided and 13 Right-sided TLE). Each group were analyzed separately using FSL package, then laterality analysis based on Tract-Based Spatial Statistics (TBSS) was performed on FA and KA images. After each analysis the left side of the patients’ brain was flipped and subtracted from the right side of the patients’s brain, and a voxel-wise z-score comparison was applied to find the significantly different areas. Results: The results showed a considerable laterality effect on the temporal lobe white matters both in FA and KA, more emphasized in patients with Right-sided mTLE. Conclusion: It can be concluded that these two measures, even though extracted from skeletonized images, can serve as decent biomarkers of laterality in case of mTLE, when the conventional MRI fails to capture the laterality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.