Abstract

Astrometric measurements using stellar interferometry rely on the precise measurement of the central white-light fringe to accurately obtain the optical path-length difference of incoming starlight to the two arms of the interferometer. Because of dispersion in the optical system the optical path-length difference is a function of the wavelength of the light and extracting the proper astrometric signatures requires accommodating these effects. One standard approach to stellar interferometry uses a channeled spectrum to determine phases at a number of different wavelengths that are then converted to the path-length delay. Because of throughput considerations these channels are made sufficiently broad so that monochromatic models are inadequate for retrieving the phase/delay information. The presence of dispersion makes the polychromatic modeling problem for phase estimation even more difficult because of its effect on the complex visibility function. We introduce a class of models that rely on just a few spectral and dispersion parameters. A phase-shifting interferometry algorithm is derived that exploits the model structure. Numerical examples are given to illustrate the robustness and precision of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.