Abstract

The microscopic inspection of blood smears provides diagnostic information concerning patients’ health status. For example, the presence of infections, leukemia, and some particular kinds of cancers can be diagnosed based on the results of the classification and the count of white blood cells. The traditional method for the differential blood count is performed by experienced operators. They use a microscope and count the percentage of the occurrence of each type of cell counted within an area of interest in smears. Obviously, this manual counting process is very tedious and slow. In addition, the cell classification and counting accuracy may depend on the capabilities and experiences of the operators. Therefore, the necessity of an automated differential counting system becomes inevitable. In this paper, CNN models are used. In order to achieve good performance from deep learning methods, the network needs to be trained with large amounts of data during the training phase. We take the images of the white blood cells for the training phase and train our model on them. With this method we achieved good accuracy than traditional methods. And we can generate the results within the seconds also.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.