Abstract

Although understanding large-scale spatial variation in species' distributions is a major goal in macroecology, relatively little attention has been paid to the factors limiting species' ranges. An understanding of these factors may improve predictions of species' movements in response to global change. We present a measure of landscape impermeability, defined as the proportion of resident species whose ranges end in an area. We quantify and map impermeability for Afrotropical birds and use multi-model inference to assess support for a wide suite of hypotheses about its potential environmental correlates. Non-spatial analyses emphasize the importance of broad-scale environmental patterns of energy availability and habitat heterogeneity in limiting species' distributions. Conversely, spatial analyses focus attention on small-scale factors of habitat and topographic complexity. These results hold even when only species from the top quartile of range sizes are assessed. All our analyses highlight that range edges are concentrated in heterogeneous habitats. Global change is expected to alter the nature and distribution of such habitats, necessitating range movement by many resident species. Therefore, impermeability provides a simple measure for identifying regions, where continuing global change and human encroachment are likely to cause profound changes in regional diversity patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.