Abstract

Boron is the archetypal Lewis acid, and therefore it is only natural that it prefers to bind nitrogen, its usual Lewis base counterpart. To challenge this assumption, we present a computationally designed bicyclopentane molecule akin to [1.1.1]propellane, but with pyramidal B and N inner atoms bonded by an "inverted" dative bond. Unexpectedly, the dimer of this system prefers to interact via an atypical boron-boron bond over the supposedly obvious boron-nitrogen bond. A molecular orbital analysis shows that the boron in this peculiar entity acts both as an electron donor and an electron acceptor, making the dimerization an amphoteric-amphoteric interaction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.