Abstract

The ability to generate large molecular datasets for phylogenetic studies benefits biologists, but such data expansion introduces numerous analytical problems. A typical molecular phylogenetic study implicitly assumes that sequences evolve under stationary, reversible and homogeneous conditions, but this assumption is often violated in real datasets. When an analysis of large molecular datasets results in unexpected relationships, it often reflects violation of phylogenetic assumptions, rather than a correct phylogeny. Molecular evolutionary phenomena such as base compositional heterogeneity and among-site rate variation are known to affect phylogenetic inference, resulting in incorrect phylogenetic relationships. The ability of methods to overcome such bias has not been measured on real and complex datasets. We investigated how base compositional heterogeneity and among-site rate variation affect phylogenetic inference in the context of a mitochondrial genome phylogeny of the insect order Coleoptera. We show statistically that our dataset is affected by base compositional heterogeneity regardless of how the data are partitioned or recoded. Among-site rate variation is shown by comparing topologies generated using models of evolution with and without a rate variation parameter in a Bayesian framework. When compared for their effectiveness in dealing with systematic bias, standard phylogenetic methods tend to perform poorly, and parsimony without any data transformation performs worst. Two methods designed specifically to overcome systematic bias, LogDet and a Bayesian method implementing variable composition vectors, can overcome some level of base compositional heterogeneity, but are still affected by among-site rate variation. A large degree of variation in both noise and phylogenetic signal among all three codon positions is observed. We caution and argue that more data exploration is imperative, especially when many genes are included in an analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.