Abstract

Convolutional Neural Networks (CNNs) constitute a class of Deep Learning models which have been used in the recent past to resolve many problems in computer vision, in particular optical flow estimation. Measuring displacement and strain fields can be regarded as a particular case of this problem. However, it seems that CNNs have never been used so far to perform such measurements. This work is aimed at implementing a CNN able to retrieve displacement and strain fields from pairs of reference and deformed images of a flat speckled surface, as Digital Image Correlation (DIC) does. This paper explains how a CNN called ‘StrainNet can be developed to reach this goal, and how specific ground truth datasets are elaborated to train this CNN. The main result is that StrainNet successfully performs such measurements, and that it achieves competing results in terms of metrological performance and computing time. The conclusion is that CNNs like StrainNet offer a viable alternative to DIC, especially for real-time applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.