Abstract
We consider solutions of the initial-Neumann problem for the heat equation on bounded Lipschitz domains in ℝN and classify the solutions whose spatial level surfaces are invariant with respect to the time variable. (Of course, the values of each solution on its spatial level surfaces vary with time.) The prototype of such classification is a result of Alessandrini, which proved a conjecture of Klamkin. He considered the initial-Dirichlet problem for the heat equation on bounded domains and showed that if all the spatial level surfaces of the solution are invariant with respect to the time variable under the homogeneous Dirichlet boundary condition, then either the initial data is an eigenfunction or the domain is a ball and the solution is radially symmetric with respect to the space variable. His proof is restricted to the initial-Dirichlet problem for the heat equation. In the present paper, in order to deal with the initial-Neumann problem, we overcome this obstruction by using the invariance condition of spatial level surfaces more intensively with the help of the classification theorem ofisoparametric hypersurfaces in Euclidean space of Levi-Civita and Segre. Furthermore, we can deal with nonlinear diffusion equations, such as the porous medium equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.