Abstract
Lignocellulosic biomass fractionaion into its three major components is critically important for efficient feedstock utilization. The hydrothermal-ethanol method has broad application as its first step, hydrothermal treatment, provides high hemicellulose separation efficiency. However, it severely inhibits the delignification on the subsequent ethanol extraction. In this study, the second step, ethanol extraction, was facilitated by the addition of 3% NaOH and 3% H2O2, resulting in a significant improvement of lignin separation (by 48.2%). SEM, AFM, XPS, and XRD were used to characterize the surface composition of the remaining solids (crude cellulose) while the structure of isolated lignin was characterized by FT-IR, CP/MAS 13C NMR, GPC and TGA. The lignin samples isolated with both facilitated and non-facilitated ethanol extraction were compared to elucidate the lignin removal mechanism. The results showed that lignin degradation and crosslinking/polymerization occur in parallel during both the hydrothermal treatment and ethanol extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.