Abstract

Soil chemistry and biota heavily influence crop plant growth and mineral nutrition. The stress-severity and optimal resource allocation hypotheses predict mutualistic symbiotic benefits to increase with the degree of metabolic imbalance and environmental stress. Using two cross-factorial pot experiments with the same biologically active calcareous soil, one time highly saline and nutrient-deficient, and the other time partially desalinated and amended with mineral soil fertilizer, we explored whether these general predictions hold true for zinc (Zn) nutrition of bread wheat in mycorrhizal symbiosis. Increased arbuscular mycorrhizal (AM) fungal root colonization positively correlated with plant Zn nutrition, but only when plants were impaired in growth due to salinity and nutrient-deficiency; this was particularly so in a cultivar-responsive to application of mineral Zn fertilizer. Evidence for direct involvement of AM fungi were positive correlations between Zn uptake from soil and frequency of fungal symbiotic nutrient exchange organelles, as well as the quantitative abundance of AM fungi of the genera Funneliformis and Rhizophagus, but not Claroideoglomus. Combined partial soil desalination and fertilization swapped the dominance ranking from Claroideoglomus spp. to Funneliformis spp. Positive growth, nitrogen, and Zn uptake responses to mycorrhization were contingent on moderate soil fertilization with ZnSO4. In agreement with the predictions of the stress-severity and optimal resource allocation hypotheses, plants limited in growth due to chemically adverse soil conditions invested relatively more into AM fungi, as evident from heavier root colonization, and took up relatively more Zn and nitrogen in response to mycorrhization, than better growing and less mycorrhized plants. It thus appears that crop plant cultivar-dependent mycorrhization and Zn fertilizer-responsiveness may reinforce each other, provided that there is bioavailable Zn in soil and plant growth is impaired by suboptimal chemical soil conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.