Abstract

Hybrid automata model systems with both digital and analog components, such as embedded control programs. Many verification tasks for such programs can be expressed as reachability problems for hybrid automata. By improving on previous decidability and undecidability results, we identify the precise boundary between decidability and undecidability of the reachability problem for hybrid automata. On the positive side, we give an (optimal) PSPACE reachability algorithm for the case of initialized rectangular automata, where all analog variables follow trajectories within piecewise-linear envelopes and are reinitialized whenever the envelope changes. Our algorithm is based on the construction of a timed automaton that contains all reachability information about a given initialized rectangular automaton. The translation has practical significance for verification, because it guarantees the termination of symbolic procedures for the reachability analysis of initialized rectangular automata. The translation also preserves the $\omega$-languages of initialized rectangular automata with bounded nondeterminism. On the negative side, we show that several slight generalizations of initialized rectangular automata lead to an undecidable reachability problem. In particular, we prove that the reachability problem is undecidable for timed automata augmented with a single stopwatch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.