Abstract
A collection of fusion biocatalysts has been generated that can be used for self-sufficient oxygenations or ketone reductions. These biocatalysts were created by fusing a Baeyer-Villiger monooxygenase (cyclohexanone monooxygenase from Thermocrispum municipale: TmCHMO) or an alcohol dehydrogenase (alcohol dehydrogenase from Lactobacillus brevis: LbADH) with three different cofactor regeneration enzymes (formate dehydrogenase from Burkholderia stabilis: BsFDH; glucose dehydrogenase from Sulfolobus tokodaii: StGDH, and phosphite dehydrogenase from Pseudomonas stutzeri: PsPTDH). Their tolerance against various organic solvents, including a deep eutectic solvent, and their activity and selectivity with a variety of substrates have been studied. Excellent conversions and enantioselectivities were obtained, demonstrating that these engineered fusion enzymes can be used as biocatalysts for the synthesis of (chiral) valuable compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.