Abstract

A large literature documenting facilitative effects for high frequency complex words and phrases has led to proposals that high frequency phrases may be stored in memory rather than constructed on-line from their component parts (similarly to high frequency complex words). To investigate this, we explored language processing during a novel picture description task. Using the magneto-encephalographam (MEG) technique and generalised additive mixed-effects modelling, we characterised the effects of the frequency of use of single words as well as two-, three-, and four-word sequences (N-grams) on brain activity during the pre-production stage of unconstrained overt picture description. We expected amplitude responses to be modulated by N-gram frequency such that if N-grams were stored we would see a corresponding reduction or flattening in amplitudes as frequency increased. We found that while amplitude responses to increasing N-gram frequencies corresponded with our expectations about facilitation, the effect appeared at low frequency ranges and for single words only in the phonological network. We additionally found that high frequency N-grams elicited activity increases in some networks, which may be signs of competition or combination depending on the network. Moreover, this effect was not reliable for single word frequencies. These amplitude responses do not clearly support storage for high frequency multi-word sequences. To probe these unexpected results, we turned our attention to network topographies and the timing. We found that, with the exception of an initial ‘sentence’ network, all the networks aggregated peaks from more than one domain (e.g. semantics and phonology). Moreover, although activity moved serially from anterior ventral networks to dorsal posterior networks during processing, as expected in combinatorial accounts, sentence processing and semantic networks ran largely in parallel. Thus, network topographies and timing may account for (some) facilitative effects associated with frequency. We review literature relevant to the network topographies and timing and briefly discuss our results in relation to current processing and theoretical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.