Abstract
In this paper we show that the Rees algebra can be made into a functor on modules over a ring in a way that extends its classical definition for ideals. The Rees algebra of a module $M$ may be computed in terms of a âmaximalâ map $f$ from $M$ to a free module as the image of the map induced by $f$ on symmetric algebras. We show that the analytic spread and reductions of $M$ can be determined from any embedding of $M$ into a free module, and in characteristic 0âbut not in positive characteristic!âthe Rees algebra itself can be computed from any such embedding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.