Abstract

ABSTRACT We present the theory of the fling step and a theoretical method for simulating accurately the near-fault strong motions, and apply it to reproduce various strong-motion records near surface faults. Theoretically, the fling step is the contribution of the static Green’s function in the representation theorem (Hisada and Bielak, 2003), and we show that this theory holds for any seismic velocity structure. We first demonstrate the validity of this theory using theoretical solutions of a circular fault model in a homogeneous full-space. Next, we apply the theory to layered half-spaces, present a theoretical method based on the wavenumber integration method, and introduce various techniques to simulate the near-fault ground motions including fling steps with high accuracy. Finally, we demonstrate the effectiveness of the method by reproducing various strong-motion records near surface fault ruptures and discuss the characteristics of near-fault strong motions including the fling step and the forward directivity pulse. We made all of the software and data used in this article available on the internet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.