Abstract
Biological invasions are opportunities to gain insight into fundamental evolutionary questions, because reproductive isolation and sudden alterations in selection pressures are likely to lead to rapid evolutionary change. Here I investigate the role played by invasive species in revealing the rate and form of contemporary phenotypic change in wild populations by expanding a database of more than 5,500 rates of phenotypic change from 90 species of plants and animals. Invasive species are frequently used as model organisms and thus contribute disproportionately to available rates of phenotypic change. However, the preponderance of these rates is the consequence of extensive study in a small number of species. I found mixed evidence to support the hypothesis that phenotypic change is associated with time depending on the metric of choice (i.e., darwins or haldanes). Insights from both invasive and native species provide evidence for abrupt phenotypic change and suggest that the environment plays a potentially important role in driving trait change in wild populations, although the environmental influence on the observed trajectories remains unclear. Thus, future work should continue to seek an understanding of the mechanistic underpinnings--both genetic and environmental--of how phenotypic variation allows populations to adapt to rapidly changing global environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.