Abstract

Electric-field-induced antiferroelectric-ferroelectric (AFE-FE) phase transition is a prominent feature of antiferroelectric (AFE) materials. The critical electric field of this phase transition is crucial for the device performance of AEFs in many applications, but the determining factor of the critical electric field is still unclear. Here, we have established the correlation between the underlying structure and the critical electric field by using in situ synchrotron X-ray diffraction and high-resolution neutron diffraction in Pb(Zr,Sn,Ti)O3-based antiferroelectrics. It is found that the critical electric field is determined by the angle between the average polarization vector in the incommensurate AFE state and the [111]P polarization direction in the rhombohedral FE state. A large polarization rotation angle gives rise to a large critical electric field. Further, density functional theory (DFT) calculations corroborate that the lower energy is required for driving a smaller angle polarization rotation. Our discovery will offer guidance to optimize the performance of AFE materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.