Abstract
Constraint programming and AI planning are powerful tools for solving assignment, optimization, and scheduling problems. They require, however, the rarely available combination of domain knowledge and mathematical modeling expertise. Learning constraints from exemplary solutions can close this gap and alleviate the effort of modeling. Existing approaches either require extensive user interaction, need exemplary invalid solutions that must be generated by experts at great expense, or show high noise-sensitivity. We aim to find constraints from potentially noisy solutions, without the need of user interaction. To this end, we formalize the problem in terms of the Minimum Description Length (MDL) principle, by which we select the model with the best lossless compression of the data. Solving the problem involves model counting, which is #P-hard to approximate. We therefore propose the greedy URPILS algorithm to find high-quality constraints in practice. Extensive experiments on constraint programming and AI planning benchmark data show URPILS not only finds more accurate and succinct constraints, but also is more robust to noise, and has lower sample complexity than the state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.