Abstract

Partially benzyl-esterified poly(ethylene glycol)- b-poly(aspartic acid) (PEG-P(Asp(Bzl))) having different hydrophobic inner-core structure were synthesized and analyzed. We obtained two types of the block copolymers for formation of polymeric micelle drug carriers; one had an amide-bond ratio of 1:3 (α/β) in the poly(aspartic acid) residues through alkaline hydrolysis, and the other one had 100% of the α-amide through acid hydrolysis. Subsequently, we prepared partially benzyl-esterified block copolymers with an esterification degree of 40 to 100% in the aspartic acid residue. Regarding camptothecin (CPT) incorporation into polymeric micelles, we evaluated effects that block copolymers’ inner hydrophobic block structures have on CPT behavior. Regarding CPT-incorporation stability, PEG-P(α,β-Asp(Bzl) block copolymers with the α and β-amides were found to exhibit higher CPT-incorporation stability. Using fluorescent probes, we evaluated the properties of inner-core blocks such as hydrophobicity and mobility/rigidity, and the findings implied that stable CPT incorporation could be obtained by an adequate balance between the micelle inner core's hydrophobicity and the micelle inner core's rigidity or between the micelle inner core's hydrophobicity and steric configuration of the hydrophobic block chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.