Abstract
SummaryThe whale optimization algorithm (WOA) is a new biological meta‐heuristic algorithm based on the social hunting behaviors of humpback whales. However, it can easily fall into a local optimum when solving complex problems and exhibits slow convergence speed and poor exploration. This study proposed three improved versions of the WOA based on the concepts of chaos initialization, nonlinear convergence factor, and chaotic inertial weight to enhance its exploration abilities. These properties were employed to improve the population diversity and maintain the balance between exploration and exploitation. The performance of the best version was compared with those of moth‐flame optimization, firefly algorithm, particle swarm optimization, gray wolf optimizer, flower pollination algorithm, original WOA, and two recently proposed hybrid WOA through 19 benchmark functions. Experimental results indicated that the proposed algorithms exhibit better performance in terms of complexity and convergence speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.