Abstract
Hydrogels have the softness and stretchability of similar tissues and are considered as materials for smart flexible electronic devices. However, the durability and reliability of most polypyrrole hydrogels in wet environments are still insufficient, especially its wet stability in the wet environment of seawater, limiting its development as flexible conductive electrodes. In this study, the porous solid carbon material after pyrolysis of natural materials is introduced into hydrogel, which is conducive to the migration and propagation of electrolyte ions, and can improve the moisture resistance stability of hydrogel. At the same time, polypyrrole material is introduced to further improve its electrical conductivity. With this method, the conductivity of conventional hydrogel materials can be increased by 12.2 times. The triboelectric nanogenerator device prepared with polypyrrole/biochar composite hydrogel can not only accurately monitor human joint motion, but also easily light up at least 300 light-emitting diodes when rubbed with aluminum materials, which proves the practical performance of the device. This study provides an alternative material for sensing hydrogels that can be used for human health monitoring of marine operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.