Abstract

Abstract Metal separation by using laser-induced particle formation was applied to the recovery of Pd from a mixed solution with Mo. In this separation, the Pd ions in the mixed solution containing 1 vol% ethanol were selectively reduced by irradiation of pulsed laser (10 Hz repetition rate) and high-repetition-pulse (HRP) laser (30 kHz repetition rate) with the wavelength of 355 nm while keeping irradiation power constant. The laser-induced reduction resulted in the generation of the Pd neutrals, which is followed by the aggregation of Pd neutrals in the absence of a stabilizing agent. The generated Pd particles were recovered and separated from the Mo ions by filtration. ICP-AES analysis of the filtrate elucidated that the Pd metals were successfully separated from Mo with a high recovery efficiency (84%). The recovery efficiency of Pd was different in the irradiation between the pulsed and HRP lasers; the efficiency obtained using the pulsed laser was 12% higher than that from the HRP laser. XRD analyses demonstrated that the Pd particles subjected to pulsed laser irradiation were 30 times larger than those subjected to the HRP laser. Based on TEM observations, the sizes of the Pd primary particles were approximately 200 nm (pulsed laser) and

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.