Abstract

Wet granulation is a size-enlargement process applied in many industrial fields, such as pharmaceutical, nutraceutical, zootecnichal, to improve flowability and compressibility properties of powders. In this work analysis of the particle size distribution (PSD) of granules was performed to understand the phenomena involved during the granulation process and to optimize the operating conditions. Hydroxypropyl methylcellulose (HPMC) granules were produced spraying distilled water as liquid binder on powders in a low-shear granulator. The experimental campaign was planned using the full factorial design statistical technique varying two factors (impeller rotation speed and binder flow rate), each at three intensities. PSDs of HPMC granules at different granulation times were obtained by an ad hoc dynamic image analysis device based on the free falling particle scheme. PSD measurements showed that wet granules size depends on the simultaneous presence of nucleation, agglomeration and breakage phenomena. The process parameters optimization was carried out using response surface methodology (RSM) and using the granulation yield (% w/w of wet granules within the size range 2000–10,000 μm) as the main variable of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.