Abstract
Werner syndrome is genetically linked to mutations in WRN that encodes a DNA helicase-nuclease believed to operate at stalled replication forks. Using a newly identified small-molecule inhibitor of WRN helicase (NSC 617145), we investigated the role of WRN in the interstrand cross-link (ICL) response in cells derived from patients with Fanconi anemia, a hereditary disorder characterized by bone marrow failure and cancer. In FA-D2(-/-) cells, NSC 617145 acted synergistically with very low concentrations of mitomycin C to inhibit proliferation in a WRN-dependent manner and induce double-strand breaks (DSB) and chromosomal abnormalities. Under these conditions, ataxia-telangiectasia mutated activation and accumulation of DNA-dependent protein kinase, catalytic subunit pS2056 foci suggested an increased number of DSBs processed by nonhomologous end-joining (NHEJ). Rad51 foci were also elevated in FA-D2(-/-) cells exposed to NSC 617145 and mitomycin C, suggesting that WRN helicase inhibition interferes with later steps of homologous recombination at ICL-induced DSBs. Thus, when the Fanconi anemia pathway is defective, WRN helicase inhibition perturbs the normal ICL response, leading to NHEJ activation. Potential implication for treatment of Fanconi anemia-deficient tumors by their sensitization to DNA cross-linking agents is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.