Abstract

We study the boundary value problem of a coupled differential system of fractional order, and prove the existence and uniqueness of solutions to the considered problem. The underlying differential system is featured by a fractional differential operator, which is defined in the Riemann-Liouville sense, and a nonlinear term in which different solution components are coupled. The analysis is based on the reduction of the given system to an equivalent system of integral equations. By means of the nonlinear alternative of Leray-Schauder, the existence of solutions of the factional differential system is obtained. The uniqueness is established by using the Banach contraction principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.