Abstract
Laser vision-sensing technologies are the most widely used to detect weld seam profiles during the intelligentized robotic welding process (IRWP) with thick steel plates, in which the weld seam profile extraction technology plays a crucial role for guiding the welding torch in real time. This paper presents an effective method to extract the weld seam profile from the intense arc background. To emphasize the weld seam profile in images and produce saliency maps at the initial stage, a top-down visual attention model is proposed using the target-driven characteristics of the weld seam profile and splashes. Due to the interference data surviving in the saliency map, a visual attention–based strategy is suggested to gradually discern the larger segments of the weld seam profile through local competition of dynamic saliency based on clustering results. For ineffective weld seam profile extraction resulting from empirical parameters used in the weld seam profile extraction process, the exponentially weighted moving average (EWMA) control chart is employed to implement fault detection and diagnosis (FDD) by monitoring irregular changes of slopes of the extracted weld seam profile. In the final stage, a novel step is arranged to retrieve the possible loss of the weld seam profile. Using the proposed method, validations are carried out using the welding experiments with T-joints and butt joints. Experimental results show that the ratio of successful extraction is over 97% and more stable welding processes with better welds are obtained. This method lays a good foundation for the general weld seam profile extraction process and shows a potential industrial application to the IRWP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.