Abstract

Least squares support vector machines (LS-SVM) is an SVM version which involves equality instead of inequality constraints and works with a least squares cost function. In this way, the solution follows from a linear Karush–Kuhn–Tucker system instead of a quadratic programming problem. However, sparseness is lost in the LS-SVM case and the estimation of the support values is only optimal in the case of a Gaussian distribution of the error variables. In this paper, we discuss a method which can overcome these two drawbacks. We show how to obtain robust estimates for regression by applying a weighted version of LS-SVM. We also discuss a sparse approximation procedure for weighted and unweighted LS-SVM. It is basically a pruning method which is able to do pruning based upon the physical meaning of the sorted support values, while pruning procedures for classical multilayer perceptrons require the computation of a Hessian matrix or its inverse. The methods of this paper are illustrated for RBF kernels and demonstrate how to obtain robust estimates with selection of an appropriate number of hidden units, in the case of outliers or non-Gaussian error distributions with heavy tails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.