Abstract

AbstractWe introduce and develop a weighted Bayesian bootstrap (WBB) for machine learning and statistics. WBB provides uncertainty quantification by sampling from a high dimensional posterior distribution. WBB is computationally fast and scalable using only off‐the‐shelf optimization software. First‐order asymptotic analysis provides a theoretical justification under suitable regularity conditions on the statistical model. We illustrate the proposed methodology in regularized regression, trend filtering and deep learning and conclude with directions for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.