Abstract

Community composition of the soil seedbank were characterized 35 years after the implementation of a long-term study involving cropping sequences (continuous corn, corn-soybean, corn-oat-hay) and tillage systems (conventional-, minimum- and no-tillage). Germinable seeds within the top 10 cm of soil in early spring were identified and enumerated in 1997, 1998 and 1999. Species diversity, which was characterized by richness (S), evenness (E) and the Shannon-Weiner index (H'), was significantly influenced by crop rotation rather than tillage. Generally, diversity measures were greatest in the corn-oat-hay sequences as compared to the corn-soybean rotations and the corn monoculture. Species richness and H' typically declined with increasing soil disturbance (no-tillage > minimum-tillage > conventional-tillage), whereas E increased with more intense tillage. A synthetic importance value (RI), incorporating both density and frequency measures, was generated for each species in each plot. Multiresponse permutation procedures (MRPP) were used to examine differences in weed community composition with respect to management system for all three years. Results suggest that the weed seed community in a corn-oat-hay rotational system differs substantially, in structure and composition, from communities associated with continuous corn and corn-soybean systems. No tillage systems were significantly different in composition as compared to conventional tillage and minimum tillage treatments. Crop sequence and tillage system are important cultural methods of shifting weed species number and diversity, and therefore, community structure. Manipulation of these factors could help to reduce the negative impact of weeds on crop production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.