Abstract

BackgroundTimely and accurate information about the onset of malaria epidemics is essential for effective control activities in epidemic-prone regions. Early warning methods that provide earlier alerts (usually by the use of weather variables) may permit control measures to interrupt transmission earlier in the epidemic, perhaps at the expense of some level of accuracy.MethodsExpected case numbers were modeled using a Poisson regression with lagged weather factors in a 4th-degree polynomial distributed lag model. For each week, the numbers of malaria cases were predicted using coefficients obtained using all years except that for which the prediction was being made. The effectiveness of alerts generated by the prediction system was compared against that of alerts based on observed cases. The usefulness of the prediction system was evaluated in cold and hot districts.ResultsThe system predicts the overall pattern of cases well, yet underestimates the height of the largest peaks. Relative to alerts triggered by observed cases, the alerts triggered by the predicted number of cases performed slightly worse, within 5% of the detection system. The prediction-based alerts were able to prevent 10–25% more cases at a given sensitivity in cold districts than in hot ones.ConclusionsThe prediction of malaria cases using lagged weather performed well in identifying periods of increased malaria cases. Weather-derived predictions identified epidemics with reasonable accuracy and better timeliness than early detection systems; therefore, the prediction of malarial epidemics using weather is a plausible alternative to early detection systems.

Highlights

  • And accurate information about the onset of malaria epidemics is essential for effective control activities in epidemic-prone regions

  • And accurate information about the onset of P. falciparum epidemics is essential for effective control activities in epidemic-prone regions, especially those in which limited resources must be deployed to the areas of greatest need

  • We have shown that predictions four weeks ahead, based on weather factors and past case numbers, can provide alerts that are of comparable value to those provided by an equivalent early detection system, based on observed cases

Read more

Summary

Introduction

And accurate information about the onset of malaria epidemics is essential for effective control activities in epidemic-prone regions. Public health and vector control workers would have access to a system that alerts them when substantial numbers of excess cases are expected, and such alerts should be sensitive (so that alerts are reliably generated when excess cases are imminent), specific (so that there are few "false alarms") and timely (so that there is adequate lead time to act). Each of these performance characteristics is enhanced at the expense of another. Due to the explosive nature of malaria epidemics, the usefulness of such interventions in epidemic settings depends on timely information about the onset of a severe epidemic

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.