Abstract

A polymer trilayer (sandwiched) film with a thickness of 20–30 nm has been designed to serve as a wear resistant nanoscale coating for silicon surfaces. These surface structures are formed by a multiple grafting technique applied to self-assembled monolayers (SAM) and functionalized tri-block copolymer, followed by the photopolymerization of a topmost polymer layer. The unique design of this layer includes a hard-soft-hard nanoscale architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the highly elastic rubber interlayer. At modest loads, this coating shows friction coefficient against hard steel below 0.06, which is lower than that for a classic molecular lubricant, alkylsilane SAM. At the highest pressure tested in this work, 1.2 GPa, the sandwiched coating possesses four times higher wear resistance than the SAM coating. The wear mechanism for this coating is stress and temperature induced oxidation in the contact area followed by severe plowing wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.