Abstract

In this paper, Al–7wt% Si alloy was processed via high pressure torsion (HPT) at an applied pressure 8GPa for 10 revolutions at room temperature. The microstructure and hardness of the HPT samples were investigated and compared with those of the as-cast samples. The wear properties of as-cast and the HPT samples under dry sliding conditions using different sliding distances and loads were investigated by reciprocated sliding wear tests.The HPT process successfully resulted in nanostructure Al–7wt% Si samples with a higher microhardness due to the finer Al matrix grains and Si particles sizes with more homogeneous distribution of the Si particles than those in the as-cast samples.The wear mass loss and coefficient of friction values were decreased after the HPT process. The wear mechanism was observed to be adhesive, delamination, plastic deformation bands and oxidization in the case of the as-cast alloy. Then, the wear mechanism was transformed into a combination of abrasive and adhesive wear after the HPT process. The oxidization cannot be considered as a mechanism that contributes to wear in the case of HPT samples, because O2 was not detected in all conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.