Abstract

Electrical analogy has been used extensively in modeling various mechanical systems such as thermal, hydraulic, and other dynamic systems. However, wear modeling of a tribosystem using electrical analogy has not been reported so far. In this paper, an equivalent electrical analogous system is proposed to represent the wear process. An analogous circuit is developed by mapping the wear process parameters to that of the electrical parameters. The circuit, thus, developed is solved by conventional electrical circuit theory. The material properties and operating conditions are taken into account by model parameters. Accordingly, a model equation in terms of model parameters is developed to represent the wear rate. It is also demonstrated how this methodology can be used to take various system parameters into account by incorporating the equivalent resistance of the parameters. The nonlinear model parameters are evaluated by Gauss–Newton (GN) algorithm. The proposed model is validated by using experimental data. A comparison of the proposed model with the experimental results, based on statistical methods: coefficient of determination (R2), mean-square-error (MSE) and mean absolute percentage error (MAPE), indicates that the model is competent to predict the wear with a high degree of accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.