Abstract

The hard deadline model is very popular in real-time research, but is representative or applicable to a small number of systems. Many applications, including control systems, are capable of tolerating occasional deadline misses, but are seriously compromised by a repeating pattern of late terminations. The weakly hard real-time model tries to capture these requirements by analyzing the conditions that guarantee that a maximum number of deadlines can be possibly missed in any set of consecutive activations. We provide a new weakly hard schedulability analysis method that applies to constrained-deadline periodic real-time systems scheduled with fixed priority and without knowledge of the task activation offsets. The analysis is based on a Mixed Integer Linear Programming (MILP) problem formulation; it is very general and can be adapted to include the consideration of resource sharing and activation jitter. A set of experiments conducted on an automotive engine control application and randomly generated tasksets show the applicability and accuracy of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.