Abstract
We extend the theory of weak localization and conductance fluctuations in mesoscopic samples to more complex measurement-probe configurations using the network formalism of Dou\ifmmode \mbox{\c{c}}\else \c{c}\fi{}ot and Rammal. Large measurement probes reduce both the amplitude of the localization contribution and the characteristic field scale of the low-field magnetoresistance. We present a simple and physically intuitive picture to explain these results. Our calculations on the length dependence of the conductance fluctuations for wires with narrow measurement probes agree with previous theoretical work, but allow us to make predictions for samples with more complex probe geometries. Furthermore, the detailed shape of the field autocorrelation function is strongly dependent on the geometry of the probes, reminiscent of the weak-localization magnetoresistance. The results of our experiments on weak localization and conductance fluctuations in short Ag wires confirm many of these predictions. We also discuss the relevance of our calculations for the determination of important microscopic parameters such as the electron phase coherence length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.