Abstract

AbstractA weak symmetric form of Biot's equation in cylindrical coordinates with a spatial Fourier expansion in the circumferential direction is presented. The solid phase displacement and the pore pressure are used as the dependent variables. The original three‐dimensional boundary value problem is here, due to the orthogonality of the harmonic functions and the rotationally symmetric geometry, decomposed into independent two‐dimensional problems, one for each harmonic function. This formulation provides a computationally efficient procedure for vibroacoustic finite element modelling of rotationally symmetric three‐dimensional multilayered structures including porous elastic materials. By numerical simulations, this method is compared with, and verified against, full three‐dimensional Cartesian coordinate system finite element models. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.