Abstract

Let L: Ω × Rm × Rm × n → R be a Caratheodory integrand with $$c_1 |\nu |^{p(x)} + c_2 \leqslant L(x,u,\nu ) \leqslant c_3 |\nu |^{p(x)} + c_4 ,c_3 \geqslant c_1 > 0,n + \varepsilon \leqslant p( \cdot ) \leqslant p 0.$$ Under these assumptions the weak convergence theory holds for the integral functional \(J(u): = \int\limits_\Omega {L(x,u(x),Du(x))dx} \) without further requirements. Weak convergence theory includes lower seraicontinuity with respect to the weak convergence of Sobolev functions, the convergence in energy property (weak convergence of Sobolev functions and convergence in energy imply the strong convergence of the functions), the integral representation for the relaxed energy and related questions. The results of the weak convergence theory follows from a characterization of gradient Young measures associated with these functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.